Tip
All input files can be downloaded: Files.
pcm
This option controls the polarized continuum model.
Options
- model
Value
IEFPCM. Will use IEF-PCM (integral equation formalism of PCM) model.CPCM. Will use C-PCM (Conductor-like PCM) model.COSMO. Will use COSMO (conductor-like screening model) model.Default
IEFPCMThe PCM model.
IEFPCMis recommended.
- solvent
Value
7 real numbers
wateracetic acidacetoneacetonitrileacetophenoneanilineanisolebenzaldehydebenzenebenzonitrilebenzyl chloride1-bromo-2-methylpropanebromobenzenebromoethanebromoform1-bromooctane1-bromopentane2-bromopropane1-bromopropanebutanalbutanoic acid1-butanol2-butanolbutanonebutanonitrilebutyl acetatebutylaminen-butylbenzenesec-butylbenzenetert-butylbenzenecarbon disulfidecarbon tetrachloridechlorobenzenesec-butyl chloridechloroform1-chlorohexane1-chloropentane1-chloropropaneo-chlorotoluenem-cresolo-cresolcyclohexanecyclohexanonecyclopentanecyclopentanolcyclopentanonecis-decalintrans-decalindecalin (cis/trans mixture)n-decane1-decanol1,2-dibromoethanedibromomethanedibutyl ethero-dichlorobenzene1,2-dichloroethanecis-dichloroethylenetrans-dichloroethylenedichloromethanediethyl etherdiethyl sulfidediethylaminediiodomethanediisopropyl etherdimethyl disulfidedimethyl sulfoxiden,n-dimethylacetamidecis-1,2-dimethylcyclohexanen,n-dimethylformamide2,4-dimethylpentane2,4-dimethylpyridine2,6-dimethylpyridine1,4-dioxanediphenyl etherdipropylaminen-dodecane1,2-ethanediolethanethiolethanolethyl acetateethyl formateethylbenzeneethylphenyl etherfluorobenzene1-fluorooctaneformamideformic acidn-heptane1-heptanol2-heptanone4-heptanonen-hexadecanen-hexanehexanoic acid1-hexanol2-hexanone1-hexene1-hexyneiodobenzene1-iodobutaneiodoethane1-iodohexadecaneiodomethane1-iodopentane1-iodopropaneisopropylbenzenep-isopropyltoluenemesitylenemethanol2-methoxyethanolmethyl acetatemethyl benzoatemethyl butanoatemethyl formate4-methyl-2-pentanonemethyl propanoate2-methyl-1-propanol2-methyl-2-propanoln-methylanilinemethylcyclohexanen-methylformamide (e/z mixture)2-methylpentane2-methylpyridine3-methylpyridine4-methylpyridinenitrobenzenenitroethanenitromethane1-nitropropane2-nitropropaneo-nitrotoluenen-nonane1-nonanol5-nonanonen-octane1-octanol2-octanonen-pentadecanepentanaln-pentanepentanoic acid1-pentanol2-pentanone3-pentanone1-pentenee-2-pentenepentyl acetatepentylamineperfluorobenzenephenylmethanolpropanalpropanoic acid1-propanol2-propanolpropanonitrile2-propen-1-olpropyl acetatepropylaminepyridinetetrachloroethenetetrahydrofurantetrahydrothiophene-s,s-dioxidetetralinthiophenethiophenoltoluenetributyl phosphate1,1,1-trichloroethane1,1,2-trichloroethanetrichloroethenetriethylamine2,2,2-trifluoroethanol1,2,4-trimethylbenzene2,2,4-trimethylpentanen-undecanem-xyleneo-xylenep-xylenexylene (mixture)1,1-dichloroethane1-iodopentene1-pentyne2-chlorobutanebenzyl alcoholDefault
None
The solvent name. It can be one of the string given in the table above, or 7 real numbers, which are:
dielectric_constant refraction_index Abraham_alpha Abraham_beta abomaticity halogenicity macro_surface_tension.
If some properties are unknown, you can set them to 0.
- radius
Value
UFF. Will use UFF atomic radii for tesselation.Bondi. Will use UFF atomic radii for tesselation.Default
UFFThis determines the radius type used for tesselation.
UFFis highly recommended, since Bondi radii data is not complete for some common elements, like Fe.
- tss_method
Value
Swig. Will use Swig algorithm for tesselation.Switching. Will use Switching algorithm for tesselation.Sphere. Will use sphere algorithm for tesselation.Default
SwigThe algorithm for tesselation.
Swigis recommended.Sphereis useful in the study of electron transfer.
- grid_accuracy
Value
An integer
6,14,26,38,50,86,110146,170,194,302,350,434,590770,974,1202,1454,1730,2030,23542702,3074,3470,3890,4334,4802,5294Default
302The number of Lebedev points generated for tesselation. Usually
302is enough. For higher accuracy, ``590``can be used.
Theoretical Background
The Polarizable Continuum Model (PCM) is a widely used implicit solvation model in computational chemistry. In PCM, the solute molecule is placed inside a cavity embedded in a continuous dielectric medium that represents the solvent. Instead of explicitly simulating individual solvent molecules, PCM treats the solvent as a polarizable continuum characterized by its dielectric constant and other macroscopic properties.
The interaction between the solute and the solvent is described by the polarization of the continuum in response to the solute’s charge distribution. This polarization, in turn, affects the electronic structure of the solute. PCM enables the calculation of solvation effects on molecular properties, such as energies, geometries, and spectra, with relatively low computational cost compared to explicit solvent models.
PCM is particularly useful for studying systems in solution, where solvent effects play a significant role in chemical reactivity, stability, and spectroscopic behavior. The model can be combined with various quantum chemical methods, such as Hartree-Fock and Density Functional Theory, to provide a more realistic description of molecules in their solvated environment.
Input Examples
Example: Use Built-in and Self-defined Solvent for CH3Cl with PCM
To use PCM in Qbics, we need to add the pcm keyword in the input file. There are two ways to use PCM:
Use the built-in solvent list shown above.
Explicitly give 7 numbers: dielectric_constant, refraction_index, Abraham_alpha, Abraham_beta, abomaticity, halogenicity, and macro_surface_tension. If some properties are unknown, you can set them to
0, but “dielectric_constant” must be at least given.
In the following, in pcm-1a.inp, we use aniline as solvent; in pcm-1b.inp, we explicitly give the dielectric constant, refraction index, Abraham alpha, Abraham beta, abomaticity, and halogenicity:
1basis
2 cc-pvdz
3end
4
5pcm
6 solvent aniline # Use aniline as solvent.
7end
8
9mol
10 C -0.43654823 1.13197968 0.00000000
11 H -0.07987539 1.63637787 0.87365150
12 H -0.07987539 1.63637787 -0.87365150
13 H -1.50654823 1.13199286 0.00000000
14 Cl 0.15009830 -0.52737135 0.00000000
15end
16
17task
18 energy b3lyp
19end
1basis
2 cc-pvdz
3end
4
5pcm
6 solvent 6.8882 1.5863 0.2600 0.4100 0.8570 0.0000 60.6200 # Explicitly define the solvent.
7end
8
9mol
10 C -0.43654823 1.13197968 0.00000000
11 H -0.07987539 1.63637787 0.87365150
12 H -0.07987539 1.63637787 -0.87365150
13 H -1.50654823 1.13199286 0.00000000
14 Cl 0.15009830 -0.52737135 0.00000000
15end
16
17task
18 energy b3lyp
19end
In the output file pcm-1a.out and pcm-1b.out, you will find the solvent definitions and PCM energies:
1Polarized continuum model is applied.
2 Solvent: aniline
3 Dielectric constant: 6.8882
4 Refraction index: 1.5863
5 Abraham alpha: 0.2600
6 Abraham beta: 0.4100
7 Abomaticity: 0.8570
8 Halogenicity: 0.0000
9 Macro surface tension: 60.6200
10 Tesselation:
11..omitted..
12SCF Energies
13============
14Kinetic energy: 499.00382795 Hartree
15Electron-nuclear attraction energy: -1290.65493694 Hartree
16Pseudopotential energy: 0.00000000 Hartree
17Exchange-correlation energy: -28.07548686 Hartree
18Electron Coulomb energy: 274.37629685 Hartree
19Electron exchange energy: -6.76432588 Hartree
20Nuclear repulsion energy: 51.98869889 Hartree
21PCM solvation energy: -0.00201126 Hartree
22Grimme dispersion energy: 0.00000000 Hartree
23----------------------------------------------------------------
24SCF energy (E): -500.12793727 Hartree
25Virial quotien (V/T): -2.00225271
1Polarized continuum model is applied.
2 Solvent: defined by user
3 Dielectric constant: 6.8882
4 Refraction index: 1.5863
5 Abraham alpha: 0.2600
6 Abraham beta: 0.4100
7 Abomaticity: 0.8570
8 Halogenicity: 0.0000
9 Macro surface tension: 60.6200
10 Tesselation:
11 Method: Swig
12 Radius type: UFF
13..omitted..
14SCF Energies
15============
16Kinetic energy: 499.00382490 Hartree
17Electron-nuclear attraction energy: -1290.65493976 Hartree
18Pseudopotential energy: 0.00000000 Hartree
19Exchange-correlation energy: -28.07548686 Hartree
20Electron Coulomb energy: 274.37630261 Hartree
21Electron exchange energy: -6.76432590 Hartree
22Nuclear repulsion energy: 51.98869889 Hartree
23PCM solvation energy: -0.00201136 Hartree
24Grimme dispersion energy: 0.00000000 Hartree
25----------------------------------------------------------------
26SCF energy (E): -500.12793747 Hartree
27Virial quotien (V/T): -2.00225271
To use models other than IEF-PCM model, we need to add the model keyword in the input file:
1basis
2 cc-pvdz
3end
4
5pcm
6 model cpcm # You can use IEFPCM, CPCM, or COSMO model.
7 solvent aniline # Use aniline as solvent.
8end
9
10mol
11 C -0.43654823 1.13197968 0.00000000
12 H -0.07987539 1.63637787 0.87365150
13 H -0.07987539 1.63637787 -0.87365150
14 H -1.50654823 1.13199286 0.00000000
15 Cl 0.15009830 -0.52737135 0.00000000
16end
17
18task
19 energy b3lyp
20end
The resutl is:
1SCF Energies
2============
3Kinetic energy: 499.00431927 Hartree
4Electron-nuclear attraction energy: -1290.65504950 Hartree
5Pseudopotential energy: 0.00000000 Hartree
6Exchange-correlation energy: -28.07554137 Hartree
7Electron Coulomb energy: 274.37599784 Hartree
8Electron exchange energy: -6.76433296 Hartree
9Nuclear repulsion energy: 51.98869889 Hartree
10PCM solvation energy: -0.00212532 Hartree
11Grimme dispersion energy: 0.00000000 Hartree
12----------------------------------------------------------------
13SCF energy (E): -500.12803318 Hartree
14Virial quotien (V/T): -2.00225191